Package 'rollup'

Title: A Tidy Grouping Set Aggregation
Description: A Tidy implementation of 'grouping sets', 'rollup' and 'cube' - extensions of the 'group_by' clause that allow for computing multiple 'group_by' clauses in a single statement. For more detailed information on these functions, please refer to "Enhanced Aggregation, Cube, Grouping and Rollup" <https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C+Grouping+and+Rollup>.
Authors: Ju Young Ahn [aut, cre]
Maintainer: Ju Young Ahn <[email protected]>
License: MIT + file LICENSE
Version: 0.1.0
Built: 2025-02-25 03:00:05 UTC
Source: https://github.com/juyoungahn/rollup

Help Index


grouped_df_list class definition

Description

A class to represent a list of grouped data frames.


grouping_sets

Description

Compute total amounts at different group levels, producing multiple subtotals. With the 'grouping_sets' clause following 'group_by', you can aggregate multiple grouping variables in one operation. This reflects the 'GROUPING SETS' operations in 'SQL'.

Usage

grouping_sets(df, ...)

Arguments

df

dataframe or grouped df

...

grouping variables

Value

A list of 'grouped_df' class. each 'grouped_df' object has a different grouping level.

Examples

mtcars %>% group_by(vs, am) %>% grouping_sets("vs","am",c("vs","am")) 
mtcars %>% group_by(vs, am) %>% with_rollup() 
mtcars %>% group_by(vs, am) %>% with_cube()

Generic summarise function

Description

Generic summarise function

Usage

summarise(object, ...)

Arguments

object

Object to be summarized.

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


Default method for summarise

Description

Default method for summarise

Usage

## S4 method for signature 'ANY'
summarise(object, ...)

Arguments

object

An object

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


Method for summarise on grouped_df_list

Description

Method for summarise on grouped_df_list

Usage

## S4 method for signature 'grouped_df_list'
summarise(object, ...)

Arguments

object

A grouped_df_list object.

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


Generic summarize function

Description

Generic summarize function

Usage

summarize(object, ...)

Arguments

object

Object to be summarized.

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


summarize_rollup

Description

'summarize_rollup' aggregates each 'grouped_df' in the 'grouped_df_list' class and return the unioned aggregated results.

Usage

summarize_rollup(df_list, ...)

Arguments

df_list

'grouped_df_list' class

...

functions for 'summarize'

Value

An object of the same class as .data. The unioned aggregated result of multiple grouping levels will be dropped.


Default method for summarize

Description

Default method for summarize

Usage

## S4 method for signature 'ANY'
summarize(object, ...)

Arguments

object

An object.

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


Method for summarize on grouped_df_list

Description

Method for summarize on grouped_df_list

Usage

## S4 method for signature 'grouped_df_list'
summarize(object, ...)

Arguments

object

A grouped_df_list object.

...

Additional arguments.

Value

An object of the same class as .data. One grouping level will be dropped.


Web Service Data

Description

A dataset containing information about various web services.

Usage

web_service_data

Format

A data frame with 30,000 rows and 6 variables:

date_id

date id

id

user id

gender

gender

age

age band

page_view_cnt

pageview count

product_view_cnt_cat

product view count (category)

Source

Generated for example purposes


with_cube

Description

Compute total amounts at different group levels, producing multiple subtotals. With the 'with_cube' clause following 'group_by', you can aggregate multiple grouping variables in one operation. This reflects the 'WITH CUBE' operations in 'SQL'.

Usage

with_cube(grouped_df)

Arguments

grouped_df

'grouped_df' class

Value

A list of 'grouped_df' class. each 'grouped_df' object has a different grouping level.

Examples

mtcars %>% group_by(vs, am) %>% grouping_sets("vs","am",c("vs","am"))
mtcars %>% group_by(vs, am) %>% with_rollup() 
mtcars %>% group_by(vs, am) %>% with_cube()

with_rollup

Description

Compute total amounts at different group levels, producing multiple subtotals. With the 'with_rollup' clause following 'group_by', you can aggregate multiple grouping variables in one operation. This reflects the 'WITH ROLLUP' operations in 'SQL'.

Usage

with_rollup(grouped_df)

Arguments

grouped_df

'grouped_df' class

Value

A list of 'grouped_df' class. each 'grouped_df' object has a different grouping level.

Examples

mtcars %>% group_by(vs, am) %>% grouping_sets("vs","am",c("vs","am")) 
mtcars %>% group_by(vs, am) %>% with_rollup() 
mtcars %>% group_by(vs, am) %>% with_cube()